Jumat, 05 April 2019

Fungsi Limit Tak Terhingga


Limit Matematika dan Contoh Soal

Limit Matematika  – Tak terasa ujian nasional kurang dari sebulan lagi. Buat sobat hitung, jangan lupa ikhtiar, doa, dan restu orang tua biar sukses ujian nasionalnya. Siang ini rumushitung.com coba menyuguhkan materi buat me-refresh ingatan sobat tentang materi limit matematika. Kami yakin soal limit sudah hampir bisa dipastikan akan muncul dalam soal ujian nasional 2014, entah itu soal limit biasa atau limit trigonometri.

Apa itu Limit Matematika?

Limit suatu fungsi f(x) untuk x mendekati suatu bilangan a adalah nilai pendekatan fungsi f(x) bilamana x mendekati a
Misalnya
lim┬(x→a)⁡〖f(x)=M〗
ini berarti bahwa nilai dari fungsi f(x) mendekati M jika nilai x mendekati a biar lebih paham kita simak contoh berikut
Contoh 1
Tentukan limit dari
soal 2
Jawab :
Untuk nilai x mendekati 1 maka (4x2+1) akan mendekati 4.12 + 1 = 5 sehingga nilai dari
jawaban contoh soal 1
Contoh 2
Tentukan nilai dari limit
lim┬(x→1)⁡〖(x^2+2x-3)/(x-1)〗
Jawab
Misal sobat langsung memasukkan nili x = 1 ke dalam persamaan hasilnya tidak akan terdefinisi karena bilangan pembagi ketemu 0 (x-1). Akan tetapi bentuk di atas masih bisa disederhakan guna menghilangkan komponen pembagi yang bernilai nol yaitu
 lim┬(x→1)⁡〖(x^2+2x-3)/(x-1)=lim┬(x→1)⁡〖((x-1)(x+3))/((x-1))〗 〗=lim┬(x→1)⁡〖x+3=4〗

Cara Mengerjakan Limit Fungsi yang Tidak Terdefinisi

Adakalanya penggantian niali x oleh a dalam lim f(x) x→a membuat f(x) punya nilai yang tidak terdefinisi, atau f(a) menghasilkan bentuk 0/0, ∞/∞ atau 0.∞. Jika terjadi hal tersebut solusinya adalah bentuk f(x) coba sobat sederhanakan agar nilai limitnya dapat ditenntukan.

Limit Bentuk 0/0


Bentuk 0/0 kemungkinan timbul dalam
bentuk o
ketika sobat menemukan  bentuk seperti itu coba untuk utak-utik fungsi tersebut hingga ada yang bisa dicoret. Jika itu bentuk persaman kuadrat sobat bisa coba memfaktorkan atau dengan cara asosiasi dan jangan lupakan ada aturan a2-b2 = (a+b) (a-b). Berikut contohnya
lim┬(x→1)⁡〖(x^2-1)/(x-1)=lim┬(x→1)⁡〖((x-1)(x+1))/(x-1)=lim┬(x→1)⁡〖(x+1)=2〗 〗 〗
bentuk 0 contoh soal 2

Bentuk ∞/∞


Bentuk limit  ∞/∞ terjadi pada fungsi suku banyak (polinom) seperti
limit tak hingga
Contoh Soal
Coba sobat tentukan
cotoh soal limit tak hingga
Jawab
 lim┬(x→∞)⁡〖(〖4x〗^3+2x+1)/(〖5x〗^3+〖8x〗^2+6)〗  =lim┬(x→∞)⁡〖(〖4x〗^3/x^3 +2x/x^3 +1/x^3 )/(〖5x〗^3/x^3 -〖8x〗^2/x^3 +6/x^3 )〗  =lim┬(x→∞)⁡〖(4+2/x^2 +1/x^3 )/(5-8/x+6/x^3 )〗  〖=lim┬(x→∞)〗⁡〖(4+2/∞^2 +1/∞^3 )/(5-8/∞+6/∞^3 )〗  〖=lim┬(x→∞)〗⁡〖(4+0+0)/(5-0+0)=4/5〗
Berikut rangkuman rumus cepat limit matematika bentuk  ∞/∞
rumus limit perubahan
  • Jika m<n maka L = 0
  • Jika m=n maka L = a/p
  • Jika m>n maka L = ∞

Bentuk Limit (∞-∞)


Bentuk (∞-∞) sering sekali muncul dalam ujian nasional. Bentuk soalnya akan sangat beragam. Namun demikian, penyelesaiannya tidak jauh-jauh dari penyederhanaan. Be creative, out of the box. Berikut contoh soal yang kami ambil dari ujian nasional 2013.
Tentukan Limit
2014-03-01_210110
Jika sobat masukkan x -> 1 maka bentuknya akan mmenjadi (∞-∞). Untuk menghilangkan bentuk ∞-∞ kita sederhanakan bentuk tersebut menjadi
jawaban soal
Sekian dulu sobat belajar kita tentang limit matematika. Untuk limit trigonometri akan kita sajikan pada postingan tersendiri. Selamat belajar.

Tidak ada komentar:

Posting Komentar

Limit tak hingga

Pengertian Di dalam matematika, konsep limit digunakan untuk menjelaskan sifat dari suatu fungsi, saat argumen mendekati ke suatu titik, ...